Affiliation:
1. Dept. of Geomatics Engineering, Hacettepe University, 06800 Beytepe Ankara, Turkey
2. Dept. of Geological Engineering, Hacettepe University, 06800 Beytepe Ankara, Turkey
Abstract
This study explores the potential of photogrammetric datasets and remote sensing methods for the assessment of a meteorological catastrophe that occurred in Ordu, Turkey in August 2018. During the event, flash floods and several landslides caused losses of lives, evacuation of people from their homes, collapses of infrastructure and large constructions, destruction of agricultural fields, and many other economic losses. The meteorological conditions before and during the flood were analyzed here and compared with long-term records. The flood extent and the landslide susceptibility were investigated by using multisensor and multitemporal data. Sentinel-1 SAR (Synthetic Aperture Radar), Sentinel-2 optical data, and aerial photogrammetric datasets were employed for the investigations using machine learning techniques. The changes were assessed both at a local and regional level and evaluated together with available damage reports. The analysis of the rainfall data recorded during the two weeks before the floods and landslides in heavily affected regions shows that the rainfall continued for consecutive hours with an amount of up to 68 mm/hour. The regional level classification results obtained from Sentinel-1 and Sentinel-2 data by using the random forest (RF) method exhibit 97% accuracy for the flood class. The landslide susceptibility prediction performance from aerial photogrammetric datasets was 92% represented by the Area Under Curve (AUC) value provided by the RF method. The results presented here show that considering the occurrence frequency and immense damages after such events, the use of novel remote sensing technologies and spatial analysis methods is unavoidable for disaster mitigation efforts and for the monitoring of environmental effects. Although the increasing number of earth observation satellites complemented with airborne imaging sensors is capable of ensuring data collection requirement with diverse spectral, spatial, and temporal resolutions, further studies are required to automate the data processing, efficient information extraction, and data fusion and also to increase the accuracy of the results.
Subject
General Earth and Planetary Sciences
Reference72 articles.
1. CRED (Centre for Research on the Epidemiology of Disasters)UNDRR (UN Office for Disaster Risk ReductionThe human cost of disasters: an overview of the last 20 years (2000-2019)2020October 2020, https://reliefweb.int/report/world/human-cost-disasters-overview-last-20-years-2000-2019
2. Meteorological aspects of heavy precipitation in relation to floods – An overview
3. Trends, change points and spatial variability in extreme precipitation events from 1961 to 2017 in China
4. Chennai extreme rainfall event of 2015 under future climate projections using the pseudo global warming dynamic downscaling method;P. Jyoteeshkumar;Current Science,2020
5. Extreme rainfall event in the Northeast coast of Brazil: a numerical sensitivity study
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献