A Hybrid Ant Colony Optimization Algorithm for Multi-Compartment Vehicle Routing Problem

Author:

Guo Ning12ORCID,Qian Bin13ORCID,Hu Rong13,Jin Huai P.13,Xiang Feng H.1

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

2. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China

3. Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China

Abstract

The multi-compartment vehicle routing problem (MCVRP) has been applied in fuel or food delivery, waste collection, and livestock transportation. Ant colony optimization algorithm (ACO) has been recognized as an efficient method to solve the VRP and its variants. In this paper, an improved hybrid ant colony optimization algorithm (IHACO) is proposed to minimize the total mileage of the MCVRP. First, a probabilistic model is designed to guide the algorithm search towards high-quality regions or solutions by considering both similar blocks of customers and customer permutations. Then, a heuristic rule is presented to generate initial individuals to initialize the probabilistic model, which can drive the search to the high-quality regions faster. Moreover, a new local search using the geometry optimization is developed to execute exploitation from the promising regions. Finally, two types of variable neighborhood descent (VND) techniques based on the speed-up search strategy and the first move strategy are devised to further enhance the local exploitation ability. Comparative numerical experiments with other algorithms and statistical analyses are carried out, and the results show that IHACO can achieve better solutions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3