Exploration of Digital Twin Design Mechanism of the Deep in Situ Rock Insulation Coring Device

Author:

Yu Bo1ORCID,Xie Heping12,Chen Ling1ORCID,Zhao Wu1,He Zhiqiang12

Affiliation:

1. School of Mechanical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China

2. Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061, China

Abstract

With the development of the resource exploration and environmental science drilling, strict and scientific requirements are put forward for the samples taken from drilling. It is significant to keep the original appearance of the core and obtain the in situ core for the analysis of deep geological fluid and the exploration of the law of geological disasters caused by large-scale geological exploitation. To achieve the high-fidelity in situ core of deep rock, the development of the corresponding deep in situ fidelity coring device should involve the insulation coring device. The development of deep in situ fidelity coring device is a typical sophisticated product design. There are many problems in the design process, such as multimodules, multidisciplinary, crossdomain, and high coupling, which makes it more difficult for users to participate in product design and understand the product design intention. Digital twin technology, such as time data collection, accelerated iterative optimization, and high-fidelity rendering, provides users with an immersive experience and deepens their understanding of the product design intention. The exploration of the novel design model combined digital twin technology with innovative design theory. Digital twin innovative design of the deep in situ insulation coring device is based on the innovative design method, which built a digital connection between the pre-research test platform and the corresponding simulation models. This digital twin to help users participate in product design and understand the product design process. Finally, the TOPSIS evaluation model was used to calculate the user’s score on the design scheme, which increased by 27.64%, which improves the overall efficiency of product design. This paper provides a practical design method and technical means for the design of the deep in situ insulation coring device based on the geological mechanism and control theory of thermal insulation core.

Funder

National Key Research and Development Project

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3