Macroscopic and Mesoscopic Mechanical Properties of Mine Tailings with Different Dry Densities under Different Confining Pressures

Author:

Zhang Zhi-jun123ORCID,Guo Yao-hui,Tian Ya-kunORCID,Hu Lin,Wang Xi-xian,Zheng Huai-miao,Wu Ling-lingORCID,Song Zhengyang

Affiliation:

1. School of Resource & Environment and Safety Engineering, University of South China, 421001 Hengyang, China

2. Hunan Province & Hengyang City Engineering Technology Research Center for Disaster Prediction and Control on Mining Geotechnical Engineering, China

3. Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 421001 Hengyang, China

Abstract

Particle flow numerical simulation software (PFC3D) was utilized to establish the consolidated-undrained triaxial compression test numerical models of mine tailings with different dry densities to deeply investigate the macroscopic and microscopic characteristics of mine tailings in a tailing pond in Hunan Province. Comparing the results of the simulation and the laboratory experiment, the mesoscopic parameters of the particle flow numerical simulation were obtained through continuously adjusting the mesoscopic parameter with the higher degree of agreement between the stress-strain curve, the peak strength, and the elastic modulus as the determining standard. The macroscopic and microscopic characteristics of mine tailings were studied from the perspectives of stress-strain, axial strain-volume strain, coordination number, particle velocity vector, and contact force between particles. After numerous numerical tests, it was found that the PFC3D simulation results are consistent with experiment results of the dry density tailing samples under different confining pressures; compared with the high confining pressure, the simulation test results at lower confining pressures were more with that of the laboratory tests; low density and high confining pressure both have inhibitory effect on the dilatancy characteristics of triaxial samples; with the same confining pressure, the dilatancy tendency of low dry density samples is suppressed comparing with the high dry density samples. The initial coordination number of the numerical model is large, which proves that the contact degree of the model is good to some extent.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3