Experimental Investigation on the Energy Storage Characteristics of Red Sandstone in Triaxial Compression Tests with Constant Confining Pressure

Author:

Li Liuliu1ORCID,Gong Fengqiang12ORCID

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. School of Civil Engineering, Southeast University, Nanjing 211189, China

Abstract

The elastic energy stored in deep rock in three-dimensional stress environment is the energy source of rockburst. To investigate the energy storage characteristics of deep rock under different confining pressures, a series of triaxial single-cyclic loading-unloading compression tests were conducted on red sandstone specimens under eight confining pressures. The input energy density, elastic energy density, and dissipative energy density of the specimen in axial, circumferential, and total directions can be obtained by the area diagram integration method. The results show that the input energy density in the axial direction accounts for the largest logarithmic proportion of the total input energy density, and the relationship between all energy density parameters and unloading level can be described by quadratic function. In the axial direction, there is a linear function relationship among elastic energy density, dissipative energy density, and input energy density. In the circumferential direction, there is a quadratic function relationship among elastic energy density, dissipative energy density, and input energy density. For the total energy density parameters of the rock specimen, the relationship among elastic energy density, dissipative energy density, and input energy density conforms to the quadratic function. According to the above correlation function, the elastic energy stored in deep rock under different confining pressures can be accurately obtained, which provides a foundation for studying the mechanism of rockburst under three-dimensional unloading from the energy perspective.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3