Novel Defense Schemes for Artificial Intelligence Deployed in Edge Computing Environment

Author:

Zhou Chengcheng1ORCID,Liu Qian2,Zeng Ruolei3ORCID

Affiliation:

1. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Institute of Informationization and Software Industry, China Center for Information Industry of Development, Beijing 100036, China

3. Computer Sciences, School of Computer, Data & Information Sciences, University of Wisconsin-Madison, Madison WI 53706, USA

Abstract

The last few years have seen the great potential of artificial intelligence (AI) technology to efficiently and effectively deal with an incredible deluge of data generated by the Internet of Things (IoT) devices. If all the massive data is transferred to the cloud for intelligent processing, it not only brings considerable challenges to the network bandwidth but also cannot meet the needs of AI applications that require fast and real-time response. Therefore, to achieve this requirement, mobile or multiaccess edge computing (MEC) is receiving a substantial amount of interest, and its importance is gradually becoming more prominent. However, with the emerging of edge intelligence, AI also suffers from several tremendous security threats in AI model training, AI model inference, and private data. This paper provides three novel defense strategies to tackle malicious attacks in three aspects. First of all, we introduce a cloud-edge collaborative antiattack scheme to realize a reliable incremental updating of AI by ensuring the data security generated in the training phase. Furthermore, we propose an edge-enhanced defense strategy based on adaptive traceability and punishment mechanism to effectively and radically solve the security problem in the inference stage of the AI model. Finally, we establish a system model based on chaotic encryption with the three-layer architecture of MEC to effectively guarantee the security and privacy of the data during the construction of AI models. The experimental results of these three countermeasures verify the correctness of the conclusion and the feasibility of the methods.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secure Smart Healthcare Framework Using Lightweight DNA Sequence and Chaos for Mobile-Edge Computing;IEEE Internet of Things Journal;2023-03-15

2. Edge Network Optimization Based on AI Techniques: A Survey;Electronics;2021-11-18

3. A Novel Security Framework for Edge Computing based UAV Delivery System;2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom);2021-10

4. Enabling and Leveraging AI in the Intelligent Edge: A Review of Current Trends and Future Directions;IEEE Open Journal of the Communications Society;2021

5. Explainable Intelligence-Driven Defense Mechanism against Advanced Persistent Threats: A Joint Edge Game and AI Approach;IEEE Transactions on Dependable and Secure Computing;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3