Experimental Behavior of the Curved Continuous Twin I-Girder Composite Bridge with a Precast Concrete Slab Subjected to Bending, Shear, and Torsion

Author:

Shen Chuandong1ORCID,Song Yifan1ORCID,Yan Lei1,Li Yuan1,Wang Xueli2,He Shuanhai1

Affiliation:

1. School of Highway, Chang’An University, Xi’an 710064, China

2. Shanxi Expressway Construction Group Company, Xi'an 710065, China

Abstract

In order to investigate the mechanical behavior, ultimate load carrying capacity, and failure mode of the intact curved continuous twin I-girder composite bridge (TGCB) with a precast concrete slab, one curved continuous composite bridge model with a scale ratio of 1 : 5 of a prototype bridge was designed and manufactured considering the influence of the construction sequence. Four symmetric point loads’ test was carried out. In this paper, load-deflection relationship and strain development of steel girders, concrete slab, and reinforcement at key sections were tested and analyzed. Failure mode, crack development, and major crack width at the top surface of the concrete slab in the hogging moment region were also reported. The experimental results demonstrated that the load capacity under the initial cracking level, cracking level with the width of 0.2 mm, and steel girder yielding state is about 1.7, 5.0, and 6.3 times of the design load, respectively. Due to the influence of curvature, the stiffness of the external girder is less than that of the internal girder. However, the ultimate bearing capacity is basically the same, approximately 13.6 times of the design load. During the loading process, plastic hinge was first observed at the intermediate support section as a result of the hogging moment which should be emphasized in design. The local buckling took place after yielding, indicating a class 2 section according to Eurocode 4. In addition, the TGCB had good ductility since the displacement ductility coefficients of the external and internal girders were 4.40 and 4.06, respectively.

Funder

Shanxi Transportation Technology Project

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3