Convolution Neural Network-Based Higher Accurate Intrusion Identification System for the Network Security and Communication

Author:

Gu Zhiwei1ORCID,Nazir Shah2ORCID,Hong Cheng1,Khan Sulaiman2

Affiliation:

1. State Grid Quzhou Power Supply Company, Quzhou 324000, China

2. Department of Computer Science, University of Swabi, Ambar, Pakistan

Abstract

With the development of communication systems, information securities remain one of the main concerns for the last few years. The smart devices are connected to communicate, process, compute, and monitor diverse real-time scenarios. Intruders are trying to attack the network and capture the organization’s important information for its own benefits. Intrusion detection is a way of identifying security violations and examining unwanted occurrences in a computer network. Building an accurate and effective identification system for intrusion detection or malicious activities can secure the existing system for smooth and secure end-to-end communication. In the proposed research work, a deep learning-based approach is followed for the accurate intrusion detection purposes to ensure the high security of the network. A convolution neural network based approach is followed for the feature classification and malicious data identification purposes. In the end, comparative results are generated after evaluating the performance of the proposed algorithm to other rival algorithms in the proposed field. These comparative algorithms were FGSM, JSMA, C&W, and ENM. After evaluating the performance of these algorithms and the proposed algorithm based on different threshold values ranging, Lp norms, and different parametric values for c, it was concluded that the proposed algorithm outperforms with small Lp values and high Kitsune scores. These results reflect that the proposed research is promising toward the identification of attack on data packets, and it also reflects the applicability of the proposed algorithms in the network security field.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3