Leveraging Social Relationship-Based Graph Attention Model for Group Event Recommendation

Author:

Liao Guoqiong1,Deng Xiaobin12ORCID

Affiliation:

1. School of Information Management, Jiangxi University of Finance and Economics, Nanchang 330013, China

2. Department of Construction Engineering, Jiangxi Water Resources Institute, Nanchang 330013, China

Abstract

Recently, event-based social networks(EBSN) such as Meetup, Plancast, and Douban have become popular. As users in the networks usually take groups as an unit to participate in events, it is necessary and meaningful to study effective strategies for recommending events to groups. Existing research on group event recommendation either has the problems of data sparse and cold start due to without considering of social relationships in the networks or makes the assumption that the influence weights between any pair of nodes in the user social graph are equal. In this paper, inspired by the graph neural network and attention mechanism, we propose a novel recommendation model named leveraging social relationship-based graph attention model (SRGAM) for group event recommendation. Specifically, we not only construct a user-event interaction graph and an event-user interaction graph, but also build a user-user social graph and an event-event social graph, to alleviate the problems of data sparse and cold start. In addition, by using a graph attention neural network to learn graph data, we can calculate the influence weight of each node in the graph, thereby generating more reasonable user latent vectors and event latent vectors. Furthermore, we use an attention mechanism to fuse multiple user vectors in a group, so as to generate a high-level group latent vector for rating prediction. Extensive experiments on real-world Meetup datasets demonstrate the effectiveness of the proposed model.

Funder

Science and Technology Project of Jiangxi Provincial Department of Education

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3