Particle Crushing and Morphology Evolution of Saturated Crushed Gangue under Compaction

Author:

Yu Bangyong12ORCID,Pan Shucai1ORCID,Xu Kaisheng1ORCID

Affiliation:

1. Institute of Construction Engineering Technology, Changzhou Vocational Institute of Engineering, Changzhou 213164, Jiangsu, China

2. State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China

Abstract

In this research, the deformation, particle crushing, and morphology evolution of saturated crushed gangue under variable axial stresses (0, 2, 4, 8, 12, 16, and 20 MPa) were investigated by performing a series of laboratory tests with our self-designed compacting device. The research results showed that the relationship between compression modulus and axial stress can be expressed by an exponential function. The relative breakage varied from 0 to 0.3685 and increased monotonously with the increase of axial stress. The relation between relative breakage and axial strain was described by a linear function. The particle circularity varied from 1.179 to 1.361 and decreased gradually with the increase of axial stress. When the axial stress increased from 0 MPa to 2 MPa, the relative breakage increased rapidly by over 39.15% of the total increase, and the particle circularity of large particles in the range of 15–20 mm sharply decreased by over 48.34% of the total decrease. 2 MPa was a key value in controlling the particle crushing of the saturated crushed gangue during compaction. Particle crushing was predominantly divided into three types: fracture, crushing, and grinding. At the early stage of compaction, fracture and crushing took place in large numbers. At the end, grinding was the main form of particle crushing. The axial strain was influenced by the initial gradation, and a larger Talbot exponent corresponded to a larger strain. However, the initial gradation had little effect on the relative breakage.

Funder

Science and Technology Project of Changzhou

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3