Characterization of Contact-Type Defects in Mortar Using a Nonlinear Ultrasonic Method

Author:

Nie Zhichao1ORCID,Wang Kui12ORCID,Zhao Mingjie12ORCID,Sun Xiao3ORCID

Affiliation:

1. Key Laboratory of Hydraulic and Waterway Engineering of Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China

2. Engineering Research Center of Diagnosis Technology and Instruments of Hydro-Construction, Chongqing Jiaotong University, Chongqing 400074, China

3. School of Hydraulic and Ecology Engineering, Nanchang Institute of Technology, Nanchang 330099, China

Abstract

Second harmonic generation (SHG) is one of the common techniques in the nonlinear ultrasonic test. The contact-type defects play an important role in material damage, which are hard to be detected. The traditional nonlinear parameter β used to evaluate the micro damage in material is derived from the classical stress-strain relation, which is more suitable for the anharmonicity of crystal rather than the contact-type defects. Recently, the theoretical model based on the bilinear stiffness law was derived, and the validity and applicability need to be further studied. For this purpose, by the numerical method, the contact interface in mortar is characterized based on the damage indicator γ. The relation between the excitation voltage and γ is obtained. Moreover, the effects of the crack length and orientation on the damage indicator γ are also obtained. The experimental method is also used to characterize the contact interface in mortar. Combining with the existing work, the results obtained in this article are discussed, and further conclusions can be drawn. The conclusions in this article provide potential of quantitative detection of the contact interface and quality evaluation of bonding layers in materials.

Funder

Chongqing Research Program of Basic Research and Frontier Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3