Methods to Measure the Network Path Connectivity

Author:

Li Yinwei1ORCID,Jiang Guo-Ping23,Wu Meng4,Song Yurong23ORCID

Affiliation:

1. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

2. School of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

3. Jiangsu Engineering Lab for IOT Intelligent Robots (IOTRobot), Nanjing 210023, China

4. School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Abstract

The functionalities, such as connectivity and communication capability of complex networks, are related to the number and length of paths between node pairs in the networks. In this paper, we propose a new path connectivity measure by considering the number and length of paths of the network (PCNL) to evaluate network path connectivity. By comparing the PCNL with the typical natural connectivity, we prove the effectiveness of the PCNL to measure the path connectivity of networks. Because of the importance of the shortest paths, we further propose the shortest paths connectivity measure (SPCNL) based on the number and length of the shortest paths. Then, we use edge-betweenness-based malicious attacks to study the relationship between the SPCNL and network topology in five types of networks. The results show that the SPCNLs of the networks have a significant corresponding relationship and similar changing trend with their network topology heterogeneities with the increase of the number of deleted edges. These findings mean that the SPCNL is positively correlated with the heterogeneity of the network topology, which provides a new perspective for designing complex networks with high path connectivity.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3