A Novel Efficient Passive Spatial Orientation Detection Method of UMT Enabled by ISB
Author:
Affiliation:
1. The Department of Electrical and Information, Wuhan University, Wuhan 430072, China
2. State Key Laboratory of Bridge Structure’s Health and Safety, Wuhan 430034, China
Abstract
The passive detection and direction-of-arrival (DOA) estimation problem is of great importance in many underwater applications such as target reconnaissance and data collection. In this paper, an Efficient Correlation-based Orientation Detection (ECOD) method is proposed to achieve high efficiency. Without high computational complexity in any Transform Domain, the time consumption of ECOD is largely reduced, which is especially critical for underwater intrusion detection, territorial waters protection, and many other real-time underwater applications. To achieve good invisibility, we design an intelligent submerged buoy (ISB) structure, which consists of six embedded hydrophones and an in situ electronic control unit (IECU). As a supplement to solutions against complex underwater environments, a hybrid ECOD method is also developed by involving the cooperation from underwater distributed sensor networks. To be specific, when high SNR signals are not recorded by a single ISB node, other distributed sensors are scheduled to assist in cooperative sensing. Simulation experiments demonstrate the efficiency of the ECOD method in passive 3D spatial orientation of underwater acoustic target and show that the ECOD method has a better performance in time consumption compared with general DOA algorithms.
Publisher
Hindawi Limited
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Link
http://downloads.hindawi.com/journals/sv/2020/8837071.pdf
Reference16 articles.
1. A Link-State Based Adaptive Feedback Routing for Underwater Acoustic Sensor Networks
2. Target Localization and Tracking for an Isogradient Sound Speed Profile
3. Robust Deployment of Dynamic Sensor Networks for Cooperative Track Detection
4. Secure localization and location verification in wireless sensor networks: a survey
5. Dolphin-inspired sonar system and its performance
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3