A Coupled Torsional-Transition Nonlinear Vibration and Dynamic Model of a Two-Stage Helical Gearbox Reducer for Electric Vehicles

Author:

Al-Tayari Abdulhameed M. Y.1ORCID,Chen Siyu1,Sun Zhou1

Affiliation:

1. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

Abstract

A coupled torsional-transition nonlinear dynamic model of a two-stage helical gear (TSHG) reduction system for electric vehicles (EVs) is presented in this paper. The model consists of 16 degrees of freedom (DOF), which includes factors such as the nonlinearity of backlash, time-varying mesh stiffness (TVMS), mesh damping, supporting bearings, static transmission error (STE), and the torsional damping and stiffness of the intermediate shaft, in which the fourth-order Runge–Kutta numerical integration method was applied to solve the differential equations. With the help of bifurcation diagrams, time-domain histories diagrams, amplitude-frequency spectrums, phase plane diagrams, Poincaré maps, root-mean-square (RMS) curves, peak-peak values (PPVs), and Lyapunov exponents, the effects of pinion rotational speed, backlash, torsional stiffness, and torque fluctuation on the dynamic behavior of TSHG system are investigated. The stability properties of steady-state responses are investigated using Lyapunov exponents. The results reveal various types of dynamic evolution mechanisms and nonlinear phenomena such as periodic-one responses, quasiperiodic responses, jumps phenomena, and chaotic responses. The research presents useful results and information to vibration control and dynamic design of the TSHG transmission system used in EVs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3