Air Pollutant Concentration Forecasting Using Long Short-Term Memory Based on Wavelet Transform and Information Gain: A Case Study of Beijing

Author:

Liu Bingchun1ORCID,Guo Xiaoling1,Lai Mingzhao1,Wang Qingshan2

Affiliation:

1. School of Management, Tianjin University of Technology, Tianjin 300384, China

2. School of Humanities, Tianjin Agricultural University, Tianjin 300384, China

Abstract

Air pollutant concentration forecasting is an effective way which protects health of the public by the warning of the harmful air contaminants. In this study, a hybrid prediction model has been established by using information gain, wavelet decomposition transform technique, and LSTM neural network, and applied to the daily concentration prediction of atmospheric pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) in Beijing. First, the collected raw data are selected by feature selection by information gain, and a set of factors having a strong correlation with the prediction is obtained. Then, the historical time series of the daily air pollutant concentration is decomposed into different frequencies by using a wavelet decomposition transform and recombined into a high-dimensional training data set. Finally, the LSTM prediction model is trained with high-dimensional data sets, and the parameters are adjusted by repeated tests to obtain the optimal prediction model. The data used in this study were derived from six air pollution concentration data in Beijing from 1/1/2014 to 31/12/2016, and the atmospheric pollutant concentration data of Beijing between 1/1/2017 and 31/12/2017 were used to test the predictive ability of the data set test model. The results show that the evaluation index MAPE of the model prediction is 7.45%. Therefore, the hybrid prediction model has a higher value of application for atmospheric pollutant concentration prediction, because this model has higher prediction accuracy and stability for future air pollutant concentration prediction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3