Blasting Vibration Control Using an Improved Artificial Neural Network in the Ashele Copper Mine

Author:

Xu Shida1ORCID,Chen Tianxiao1ORCID,Liu Jiaqi1ORCID,Zhang Chenrui1ORCID,Chen Zhiyang1ORCID

Affiliation:

1. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, Liaoning 110819, China

Abstract

Blasting is currently the most important method for rock fragmentation in metal mines. However, blast-induced ground vibration causes many negative effects, including great damage to surrounding rock masses and projects and even casualties in severe cases. Therefore, prediction of the peak particle velocity (PPV) caused by blasting plays an important role in reducing safety threats. In this paper, a genetic algorithm (GA) and an artificial neural network (ANN) algorithm were jointly used to construct a neural network model with a 4-5-1 topology to predict the PPV. For this model, the ANN parameters were optimized using the GA, and the deviating direction, horizontal distance, vertical distance, Euclidean distance, explosive type, burden, hole spacing, and maximum charge per delay were used as input information. Moreover, principal component analysis (PCA) was used to extract the first four principal components from the eight input factors as the four inputs of the ANN model. The model was successfully applied to protect an underground crushing cave from blasting vibration damage by adjusting the blasting parameters. Compared with several widely used empirical equations, the GA-ANN PPV prediction model produced significantly better results, while the Ambraseys–Hedron method was the best of the empirical methods. Therefore, the improved GA-ANN model can be used to predict the PPV on site and provide a reference for the control of blasting vibration in field production.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3