Compressed Wavelet Tensor Attention Capsule Network

Author:

Liu Xiushan1ORCID,Shan Chun1ORCID,Zhang Qin1ORCID,Cheng Jun1ORCID,Xu Peng1ORCID

Affiliation:

1. School of Electronics and Information Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, Guangdong, China

Abstract

Texture classification plays an important role for various computer vision tasks. Depending upon the powerful feature extraction capability, convolutional neural network (CNN)-based texture classification methods have attracted extensive attention. However, there still exist many challenges, such as the extraction of multilevel texture features and the exploration of multidirectional relationships. To address the problem, this paper proposes the compressed wavelet tensor attention capsule network (CWTACapsNet), which integrates multiscale wavelet decomposition, tensor attention blocks, and quantization techniques into the framework of capsule neural network. Specifically, the multilevel wavelet decomposition is in charge of extracting multiscale spectral features in frequency domain; in addition, the tensor attention blocks explore the multidimensional dependencies of convolutional feature channels, and the quantization techniques make the computational storage complexities be suitable for edge computing requirements. The proposed CWTACapsNet provides an efficient way to explore spatial domain features, frequency domain features, and their dependencies which are useful for most texture classification tasks. Furthermore, CWTACapsNet benefits from quantization techniques and is suitable for edge computing applications. Experimental results on several texture datasets show that the proposed CWTACapsNet outperforms the state-of-the-art texture classification methods not only in accuracy but also in robustness.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3