Affiliation:
1. School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
Abstract
Single-image super-resolution (SISR) is a resolution enhancement technique and is known as an ill-posed problem. Motivated by the idea of pan-sharping, we propose a novel variational model for SISR. The structure tensor of the input low-resolution image is exploited to obtain the gradient of an imaginary panchromatic image. Then, by constraining the gradient consistency, the image edges and details can be better recovered during the procedure of restoration of high-resolution images. Besides, we resort to the nonlocal sparse and low-rank regularization of image patches to further improve the super-resolution performance. The proposed variational model is efficiently solved by ADMM-based algorithm. We do extensive experiments in natural images and remote sensing images with different magnifying factors and compare our method with three classical super-resolution methods. The subjective visual impression and quantitative evaluation indexes both show that our method can obtain higher-quality results.
Funder
Natural Science Foundation of Zhejiang Province
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献