A Comparative Analysis of Data-Driven Empirical and Artificial Intelligence Models for Estimating Infiltration Rates

Author:

Zakwan Mohammad1ORCID,Niazkar Majid2ORCID

Affiliation:

1. Civil Engineering Department, Maulana Azad National Urdu University, Hyderabad, India

2. Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran

Abstract

Infiltration is a vital phenomenon in the water cycle, and consequently, estimation of infiltration rate is important for many hydrologic studies. In the present paper, different data-driven models including Multiple Linear Regression (MLR), Generalized Reduced Gradient (GRG), two Artificial Intelligence (AI) techniques (Artificial Neural Network (ANN) and Multigene Genetic Programming (MGGP)), and the hybrid MGGP-GRG have been applied to estimate the infiltration rates. The estimated infiltration rates were compared with those obtained by empirical infiltration models (Horton’s model, Philip’s model, and modified Kostiakov’s model) for the published infiltration data. Among the conventional models considered, Philip’s model provided the best estimates of infiltration rate. It was observed that the application of the hybrid MGGP-GRG model and MGGP improved the estimates of infiltration rates as compared to conventional infiltration model, while ANN provided the best prediction of infiltration rates. To be more specific, the application of ANN and the hybrid MGGP-GRG reduced the sum of square of errors by 97.86% and 81.53%, respectively. Finally, based on the comparative analysis, implementation of AI-based models, as a more accurate alternative, is suggested for estimating infiltration rates in hydrological models.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3