Remote Sensing Image Compression Evaluation Method Based on Neural Network Prediction and Fusion Quality Fidelity

Author:

Yang Wenbing1,Tong Feng2,Gao Xiaoqi3,Zhang Chunlei3,Chen Guantian3,Xiao Zhijian4ORCID

Affiliation:

1. Yiwu Industrial and Commercial College, Yiwu, Zhejiang 322000, China

2. Wenzhou Heshun Packaging Machinery Co.,Ltd., Wenzhou, Zhejiang 325000, China

3. Zenghe Packaging Co.,Ltd., Wenzhou, Zhejiang 325000, China

4. College of Digital Engineering, Zhejiang Dongfang Polytechnic, Wenzhou, Zhejiang, China

Abstract

Lossy compression can produce false information, such as blockiness, noise, ringing, ghosting, aliasing, and blurring. This paper provides a comprehensive model for optical remote sensing image characteristics based on the block standard deviation’s retention rate (BSV). We first propose a compression evaluation method, CR_CI, that combines neural network prediction and remote sensing image quality fidelity. Through the compression evaluation and improved experimental verification of multiple satellites (CBERS-02B satellite, ZY-1-02C satellite, CBERS-04 satellite, GF-1, GF-2, etc.), CR_CI can be stable, cleverly test changes in the information extraction performance of optical remote sensing images, and provide strong support for optimizing the design of compression schemes. In addition, a predictor of remote sensing image number compression is constructed based on deep neural networks, which combines compression efficiency (compression ratio), image quality, and protection. Empirical results demonstrate the image’s highest compression efficiency under the premise of satisfying visual interpretation and quantitative application.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference16 articles.

1. A remote sensing image quality standard orienting to user’s mission requirements-NIIRS;S. Hongwei;Spacecraft Recovery & Remote Sensing,2003

2. Image quality assessment for JPEG and JPEG2000;R. Sakuldee

3. Comparison of image quality assessment algorithms on compressed images, image quality and system performance VI;C. Charrier

4. Quality assessment for block-based compressed images and videos with regard to blockiness artifacts;D. Bailey

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3