Analysing the Impact of Pedestrian Network Centrality on Segment-Level Pedestrian Density

Author:

Pearce Daniel M.1ORCID,Matsunaka Ryoji1ORCID,Oba Tetsuharu2ORCID

Affiliation:

1. Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan

2. Graduate School of Management, Kyoto University, Kyoto 606-8501, Japan

Abstract

Studies have shown that street network centrality measures are capable of explaining a significant proportion of pedestrian activity. These studies typically employ street centreline networks that differ significantly from the networks that pedestrians use to traverse the built environment. Presently, centrality approaches are rarely applied to dedicated pedestrian network (DPNs). This creates uncertainty regarding their ability to explain pedestrian activity when derived from DPNs. This study addresses that gap by investigating the extent to which centrality metrics derived from DPNs can explain observed pedestrian densities, both alone and when controlling for other built environment variables in metro station environments in Asia. In total, four DPNs were created centred on metro stations in Bangkok, Manila, Osaka, and Taipei chosen to represent different urban typologies. Multivariate results show that centrality metrics alone explain a mere 6–24% of observed pedestrian densities when calculated on DPNs. When all factors are considered, the contribution of centrality remained consistent in most study sites but is somewhat reduced with land-use variables and proximity to rail transit revealed as the strongest predictors of pedestrian density. Pedestrian design factors were also frequently associated with pedestrian density. Finally, stronger associations between centrality and pedestrian densities were observed in the denser, more complex pedestrian environments. These findings provide insight into the performance of centrality measures applied to DPNs expanding pedestrian network research in this area.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GIS as a Tool for Measuring the Centrality of Transportation Networks in Budapest City;Advances in Science, Technology & Innovation;2024

2. Examining the impact of the urban transportation system on tangible and intangible vitality at the city-block scale in Nanjing, China;Environment and Planning B: Urban Analytics and City Science;2023-12-28

3. Network Science-based Analysis of Urban Green Spaces in Singapore;International Journal on Smart and Sustainable Cities;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3