Affiliation:
1. School of Civil Engineering, Tianjin University, Tianjin 300072, China
2. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
Abstract
This paper presented a comparative study of concrete-filled steel tubular (CFST) stub columns with three different confinement types from carbon fiber reinforced polymer (CFRP): outer circular CFRP, inner circular CFRP, and outer square CFRP. The compressive mechanism and physical properties of the composite column were analyzed firstly aiming at investigating the confinement effect of CFRP. Ultimate axial bearing capacity of these three CFRP-confined CFST columns was calculated based on Unified Theory of CFST and elastoplastic limit equilibrium theory, respectively. Meanwhile, the corresponding tests are adopted to validate the feasibility of the two calculation models. Through data analysis, the study confirmed the ultimate strength calculation results of the limit equilibrium method were found to be more reliable and approximate to the test results than those of Unified Theory of CFST. Then axial bearing capacity of the pure CFST column was predicted to evaluate the bearing capacity enhancement ratio of the three types of composite columns. It was demonstrated that the averaged enhancement ratio is 16.4 percent, showing that CFRP-confined CFST columns had a broad engineering applicability. Through a comparative analysis, this study also confirmed that outer circular CFRP had the best confinement effect and outer square CFRP did better than inner circular CFRP. The confinement effect of CFRP increased with the decrease of concrete strength, and it was proportional with relative proportions of CFRP and steel under the same concrete strength.
Funder
National Natural Science Foundation of China
Subject
Civil and Structural Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献