Box-Cox Transformations and Bias Reduction in Extreme Value Theory

Author:

Henriques-Rodrigues Lígia12ORCID,Gomes M. Ivette34ORCID

Affiliation:

1. Department of Mathematics, School of Science and Technology, University of Évora, Évora, Portugal

2. Research Center in Mathematics and Applications (CIMA), University of Évora, Évora, Portugal

3. DEIO, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal

4. Statistics and Applications Center (CEAUL), University of Lisbon, Lisbon, Portugal

Abstract

The Box-Cox transformations are used to make the data more suitable for statistical analysis. We know from the literature that this transformation of the data can increase the rate of convergence of the tail of the distribution to the generalized extreme value distribution, and as a byproduct, the bias of the estimation procedure is reduced. The reduction of bias of the Hill estimator has been widely addressed in the literature of extreme value theory. Several techniques have been used to achieve such reduction of bias, either by removing the main component of the bias of the Hill estimator of the extreme value index (EVI) or by constructing new estimators based on generalized means or norms that generalize the Hill estimator. We are going to study the Box-Cox Hill estimator introduced by Teugels and Vanroelen, in 2004, proving the consistency and asymptotic normality of the estimator and addressing the choice and estimation of the power and shift parameters of the Box-Cox transformation for the EVI estimation. The performance of the estimators under study will be illustrated for finite samples through small-scale Monte Carlo simulation studies.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Hindawi Limited

Subject

Computational Mathematics,Computational Theory and Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3