Deep Learning-Based Three-dimensional Transvaginal Ultrasound in Diagnosis of Intrauterine Adhesion

Author:

Li Ji1ORCID,Liu Dan1ORCID,Qing Xiaofeng1ORCID,Yu Lanlan1ORCID,Xiang Huizhen1ORCID

Affiliation:

1. Department of Gynecology, Huaihua First People’s Hospital, Huaihua 418000, Hunan, China

Abstract

This study was aimed to enhance and detect the characteristics of three-dimensional transvaginal ultrasound images based on the partial differential algorithm and HSegNet algorithm under deep learning. Thereby, the effect of quantitative parameter values of optimized three-dimensional ultrasound image was analyzed on the diagnosis and evaluation of intrauterine adhesions. Specifically, 75 patients with suspected intrauterine adhesion in hospital who underwent the hysteroscopic diagnosis were selected as the research subjects. The three-dimensional transvaginal ultrasound image was enhanced and optimized by the partial differential equation algorithm and processed by the deep learning algorithm. Subsequently, three-dimensional transvaginal ultrasound examinations were performed on the study subjects that met the standards. The March classification method was used to classify the patients with intrauterine adhesion. Finally, the results by the three-dimensional transvaginal ultrasound were compared with the diagnosis results in hysteroscope surgery. The results showed that the HSegNet algorithm model realized the automatic labeling of intrauterine adhesion in the transvaginal ultrasound image and the final accuracy coefficient was 97.3%. It suggested that the three-dimensional transvaginal ultrasound diagnosis based on deep learning was efficient and accurate. The accuracy of the three-dimensional transvaginal ultrasound was 97.14%, the sensitivity was 96.6%, and the specificity was 72%. In conclusion, the three-dimensional transvaginal examination can effectively improve the diagnostic efficiency of intrauterine adhesion, providing theoretical support for the subsequent diagnosis and grading of intrauterine adhesion.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3