Affiliation:
1. Department of Gynecology, Huaihua First People’s Hospital, Huaihua 418000, Hunan, China
Abstract
This study was aimed to enhance and detect the characteristics of three-dimensional transvaginal ultrasound images based on the partial differential algorithm and HSegNet algorithm under deep learning. Thereby, the effect of quantitative parameter values of optimized three-dimensional ultrasound image was analyzed on the diagnosis and evaluation of intrauterine adhesions. Specifically, 75 patients with suspected intrauterine adhesion in hospital who underwent the hysteroscopic diagnosis were selected as the research subjects. The three-dimensional transvaginal ultrasound image was enhanced and optimized by the partial differential equation algorithm and processed by the deep learning algorithm. Subsequently, three-dimensional transvaginal ultrasound examinations were performed on the study subjects that met the standards. The March classification method was used to classify the patients with intrauterine adhesion. Finally, the results by the three-dimensional transvaginal ultrasound were compared with the diagnosis results in hysteroscope surgery. The results showed that the HSegNet algorithm model realized the automatic labeling of intrauterine adhesion in the transvaginal ultrasound image and the final accuracy coefficient was 97.3%. It suggested that the three-dimensional transvaginal ultrasound diagnosis based on deep learning was efficient and accurate. The accuracy of the three-dimensional transvaginal ultrasound was 97.14%, the sensitivity was 96.6%, and the specificity was 72%. In conclusion, the three-dimensional transvaginal examination can effectively improve the diagnostic efficiency of intrauterine adhesion, providing theoretical support for the subsequent diagnosis and grading of intrauterine adhesion.
Subject
Computer Science Applications,Software