A Novel RANKL-Targeted Furoquinoline Alkaloid Ameliorates Bone Loss in Ovariectomized Osteoporosis through Inhibiting the NF-κB Signal Pathway and Reducing Reactive Oxygen Species

Author:

Wong Puiian1,Lv Zheng2,Li Jinglan2,Wei Qiushi34,Xu LiangLiang5ORCID,Fang Bin6ORCID,Luo Yiwen3ORCID,He Mincong34ORCID

Affiliation:

1. The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405 Guangdong, China

2. The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405 Guangdong, China

3. The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510240 Guangdong, China

4. Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China

5. Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, China

6. The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405 Guangdong, China

Abstract

Dysregulation of osteoclast-osteoblast balance, resulting in abnormal bone remodeling, is responsible for postmenopausal osteoporosis (PMOP) or other secondary forms of osteoporosis. We demonstrated that dictamnine (DIC), a novel RANKL-targeted furoquinoline alkaloid, inhibits osteoclastogenesis by facilitating the activities of reactive oxygen species (ROS), NF-κB, and NFATc1 in vitro and prevents the development of OVX-induced osteoporosis mouse models in vivo. Methods. The docking mechanism of DIC and RANKL was initially identified by protein–ligand molecular docking. RNA sequencing was performed and analyzed to reveal the potential mechanism and signaling pathway of the antiosteoporosis effects of DIC. To verify the sequencing results, we examined the impact of DIC on RANKL-induced osteoclast differentiation, bone resorption, F-actin ring production, ROS generation, and NF-κB activation in osteoclasts in vitro. Moreover, a luciferase assay was performed to determine the binding and transcriptional activity of Nrf2 and NF-κB. The in vivo efficacy of DIC was assessed with an ovariectomy- (OVX-) induced osteoporosis model, which was analyzed using micro-CT and bone histomorphometry. Results. The molecular docking results indicated that DIC could bind particularly to RANKL. RNA-seq confirmed that DIC could regulate the osteoclast-related pathway. DIC suppressed osteoclastogenesis, bone resorption, F-actin belt formation, osteoclast-specific gene expression, and ROS activity by preventing NFATc1 expression and affecting NF-κB signaling pathways in vitro. The luciferase assay showed that DIC not only suppressed the activity of Nrf2 but also contributed to the combination of Nrf2 and NF-κB. Our in vivo study indicated that DIC protects against OVX-induced osteoporosis and preserves bone volume by inhibiting osteoclast activity and function. Conclusions. DIC can ameliorate osteoclast formation and OVX-induced osteoporosis and therefore is a potential therapeutic treatment for osteoporosis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3