Metformin Synergizes with PD-L1 Monoclonal Antibody Enhancing Tumor Immune Response in Treating Non-Small Cell Lung Cancer and Its Molecular Mechanism Investigation

Author:

Wang Yifan12,Hu Jingguo2,Sun Yu2,Song Bo2,Zhang Yan2,Lu Yusong2,Ma Haitao1ORCID

Affiliation:

1. The First Affiliated Hospital of Soochow University, Department of Thoracic Surgery, Suzhou 215006, China

2. Affiliated Hospital of Chengdu University, Department of Thoracic Surgery, Chengdu 610081, China

Abstract

Despite non-small cell lung cancer (NSCLC) treatment is proved to be effective using PD-L1 monoclonal antibody (PD-L1 MAb), it is commonly seen in immune-related adverse events reported. We aimed to explore metformin synergized with PD-L1 MAb in treating NSCLC and its potential molecular mechanism. In mice, the transplantable lung cancer models were established and a co-culture system of CD8+T cells and LLC cells was constructed. The anti-tumor effect was assessed by xenograft tumor growth, proliferation signal Ki67 expression, and MTT assays. Immunohistochemistry and western blot assays were also conducted to determine tumor immune response as well as mechanism investigation. The results indicated that tumor volume and cell proliferation were markedly inhibited following metformin synergized with PD-L1 MAb which was more effective than either single metformin or PD-L1 MAb. The cytokines TNF-α, IL-2, and IFN-γ secretion in CD8+ T cells was significantly increased, and the immune response was enhanced by metformin synergized with PD-L1 MAb. Further, the WB results implied that metformin synergized with PD-L1 MAb could activate the AMPK pathway and inhibit mTOR. AMPK inhibitor (Compound C) was added, and the results showed that the anti-tumor effect was reduced in metformin + PD-L1 MAb + CC than in metformin + PD-L1 MAb which indicates the metformin synergized with PD-L1 MAb efficacy was AMPK pathway dependent. In conclusion, metformin synergized with PD-L1 MAb has better efficacy against NSCLC than metformin or PD-L1 MAb alone in an AMPK-dependent way and facilitates increasing CD8+ T cell infiltration and enhancing tumor immune response.

Funder

Chengdu University

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3