Affiliation:
1. Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
2. Department of Pharmacy, College of Health Sciences, Mettu University, P.O. Box 318, Mettu, Ethiopia
Abstract
Background. The alarming spread of parasite resistance to current antimalarial agents is threatening malaria controlling efforts. This, consequently, urged the scientific community to discover novel antimalarial drugs. Successful and most potent antimalarial drugs were obtained from medicinal plants. Capsicum frutescens is claimed to possess an antiplasmodial activity in Ethiopian and Ugandan folkloric medicine. However, there is a lack of pharmacological evidence for its antiplasmodial activity. This study, hence, was aimed at evaluating the in vivo antiplasmodial activity of C. frutescens in a mouse model. Methods. The dried fruits of the plant were extracted with 80% methanol using cold maceration. A 4-day suppressive test was employed to ascertain the claimed antiplasmodial effect of the plant. Following inoculation with P. berghei, mice in treatment groups were provided with three dose levels (100, 200, and 400 mg/kg) of the extract, while 2% Tween 80 and chloroquine served as the negative and positive controls, respectively. Weight, temperature, packed cell volume, parasitemia, and survival time were then monitored. Results. The acute oral toxicity study revealed that the crude extract caused no mortality and revealed no overt sign of toxicity. In the 4-day suppressive test, all dose levels of the extract were found to exhibit a significant (p<0.05) inhibition of parasitemia compared to those of the negative control. Maximum parasite suppression (93.28%) was exerted by the highest dose (400 mg/kg/day) of extract. Also, the extract significantly (p<0.05) prolonged survival time and prevented body weight loss and reduction in temperature and anemia compared to the vehicle-treated group. Conclusion. This investigation found strong evidence that the fruit extract of C. frutescens is endowed with promising antiplasmodial activity. Hence, the plant could serve as a potential source of a newer antimalarial agent.
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献