Affiliation:
1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. School of Electrical Engineering, Northwest University for Nationalities, Lanzhou 730030, China
Abstract
Constructing a rational affinity matrix is crucial for spectral clustering. In this paper, a novel spectral clustering via local projection distance measure (LPDM) is proposed. In this method, the Local-Projection-Neighborhood (LPN) is defined, which is a region between a pair of data, and other data in the LPN are projected onto the straight line among the data pairs. Utilizing the Euclidean distance between projective points, the local spatial structure of data can be well detected to measure the similarity of objects. Then the affinity matrix can be obtained by using a new similarity measurement, which can squeeze or widen the projective distance with the different spatial structure of data. Experimental results show that the LPDM algorithm can obtain desirable results with high performance on synthetic datasets, real-world datasets, and images.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献