Crack Initiation, Propagation, and Failure Characteristics of Jointed Rock or Rock-Like Specimens: A Review

Author:

Cao Ri-hong123,Cao Ping1,Lin Hang1ORCID,Fan Xiang34,Zhang Chunyang5ORCID,Liu Taoying14ORCID

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China

2. School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth 6009, Australia

3. Engineering laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province, Changsha University of Science & Technology, Changsha 410114, Hunan, China

4. School of Highway, Chang’an University, Xi’an 710064, China

5. School of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, China

Abstract

Rock masses are heterogeneous materials containing a large number of discontinuities, and the failure of the natural rock mass is induced by the crack propagation and coalescence of discontinuities, especially for the rock mass around tunnel or underground space. Because the deformation or failure process of jointed rock mass exhibits strongly nonlinear characteristics, it is also very difficult to predict the strength and failure modes of the rock mass. Therefore, it is very necessary to study the failure mechanisms of jointed rock mass under different stress conditions. Apart from the stress condition, the discontinuities geometry also has a significant influence on the mechanical behavior of jointed rock mass. Then, substantial, experimental, and numerical efforts have been devoted to the study of crack initiation, propagation, and coalescence of rock or rock-like specimens containing different kinds of joints or fissures. The purpose of this review is to discuss the development and the contribution of the experiment test and numerical simulation in failure behavior of jointed rock or rock-like specimens. Overall, this review can be classified into three parts. It begins by briefly explaining the significance of studying these topics. Afterwards, the experimental and numerical studies on the strength, deformation, and failure characteristics of jointed rock or rock-like materials are carried out and discussed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3