Machine Learning Implementation of a Diabetic Patient Monitoring System Using Interactive E-App

Author:

Alazzam Malik Bader1ORCID,Mansour Hoda2ORCID,Alassery Fawaz3ORCID,Almulihi Ahmed4ORCID

Affiliation:

1. Faculty of Computer Science and Informatics, Amman Arab University, Amman, Jordan

2. College of Business Administration, University of Business and Technology, Jeddah, Saudi Arabia

3. Department of Computer Engineering, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia

4. Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Abstract

Lifestyle influences morbidity and mortality rates in the world. Physical activity, a healthy weight, and a healthy diet are key preventative health behaviours that help reduce the risk of developing type 2 diabetes and its complications, such as cardiovascular disease. A healthy lifestyle has been shown to prevent or delay chronic diseases and their complications, but few people follow all recommended self-management behaviours. This work seeks to improve knowledge of factors affecting type 2 diabetes self-management and prevention through lifestyle changes. This paper describes the design, development, and testing of a diabetes self-management mobile app. The app tracked dietary consumption and health data. Bluetooth movement data from a pair of wearable insole devices are used to track carbohydrate intake, blood glucose, medication adherence, and physical activity. Two machine learning models were constructed to recognise sitting and standing. The SVM and decision tree models were 86% accurate for these tasks. The decision tree model is used in a real-time activity classification app. It is exciting to see more and more mobile health self-management apps being used to treat chronic diseases.

Funder

Taif University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3