Multifractional Brownian Motion and Quantum-Behaved Partial Swarm Optimization for Bearing Degradation Forecasting

Author:

Wanqing Song1ORCID,Chen Xiaoxian1ORCID,Cattani Carlo2,Zio Enrico3

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, No. 333 Longteng Road, Songjiang District, Shanghai 201620, China

2. Engineering School (DEIM), University of Tuscia, Viterbo, Italy

3. Energy Department, Politecnico di Milano, Campus Bovisa, Via La Masa 34/3, Milano, MI 20156, Italy

Abstract

Gradual degradation of the bearing vibration signal is usually studied as a nonstationary stochastic time series. Roller bearings are working at high speed in a heavy load environment so that the combination of bearing faults gradually degraded during the rotation might lead to unpredicted catastrophic accidents. The degradation process has the property of long-range dependence (LRD), so that the fractional Brownian motion (fBm) is taken into account for a prediction model. Because of the dramatic changes in the bearing degradation process, the Hurst exponent that describes the fBm will change during the degradation process. A priori Hurst value of the conventional fBm in the prediction is fixed, thus inducing a minor accuracy of the prediction. To avoid this problem, we propose an improved prediction method. Based on the following steps, at the initial data processing, a skip-over factor is selected as the characteristics parameter of the bearing degradation process. A multifractional Brownian motion (mfBm) replaces the fBm for the degradation modeling. We will show that also our mfBm has the same property of long-range dependence as the fBm. Moreover, a time-varying Hurst exponent H(t) is taken to replace the constant H in fBm. Finally, we apply the quantum-behaved partial swarm optimization (QPSO) to optimize H(t) for a finite interval. Some tests and corresponding experimental results will show that our model QPSO + mfBm have a much better performance on the prediction effect than fBm.

Funder

Natural Science Foundation of Shanghai

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3