The Methods toward Improving Communication Performance in Transparent Radio Frequency Signals

Author:

Daldal Nihat1,Nour Majid2,Polat Kemal1ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, 14280 Bolu, Turkey

2. Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

In wireless digital communications, amplitude-shift keying (ASK) and frequency-shift keying (FSK) modules are often used and radio frequency (RF), communication synchronization, and noise problems affect the performance very much. In particular, the sending of byte-type data called synchronous and preamble before sending data in intermodule communication increases the sent data and decreases the speed. Also, the microcontroller at the output of the RF receiver module continuously listens to the RF noise and analyzes incoming data, but this increases the processing load of the microcontroller. Moreover, it reduces the speed of performing other operations. In this study, a transparent RF transmitter and receiver have been investigated, and methods for increasing the communication performance of the modules have been proposed and performed. Two of the proposed methods prevented the continuous listening of the microprocessor in the RF receiver structure so that the microprocessor can be used with other processes. In other methods, the compression of the data size was achieved because the transmission of a series of data in RF communication systems was limited to a certain extent. In the last section of the study, since the RF modules have failed to transmit the data due to corruption in the extended data dimensions, the bit carrier control security code has been created for the data series and more healthy communication has been performed.

Funder

King Abdulaziz University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3