Molecular Signatures of Humic Acids from Different Sources as Revealed by Ultrahigh Resolution Mass Spectrometry

Author:

Qin Shuai12,Xu Chengbin2,Xu Yingzi1,Bai Yingchen1,Guo Fei1ORCID

Affiliation:

1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

2. School of Environmental Sciences, Liaoning University, Shenyang 110036, China

Abstract

Humic acid (HA) is extremely important for understanding the geochemical cycle of pollutants in different environments. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has performed molecular-level analysis of two standard HAs from the Suwannee River (SRHA) and leonardite (LEHA) and HA from Jiufeng forest in Beijing (JFHA), which is impossible for other conventional instruments. Regardless of the source of HA, compounds containing more heteroatoms (such as nitrogen and sulfur) have a higher degree of unsaturation and aromaticity. JFHA, SRHA, and LEHA from soil, river, and leonardite, respectively, are arranged in order from the lowest to highest degree of humification, according to molecular unsaturation and aromaticity of HAs. Soil HA is more labile and contains many large molecular weight compounds with low unsaturation. Regardless of unsaturation, molecules of River HA have a homogeneous molecular mass distribution and contain many plant-derived lignin- and tannin-like compounds, which are more stable than lipid and more labile than condensed aromatics. Leonardite HA with a high degree of humification contains a large number of compounds with high aromaticity and more heteroatoms and has low lability. Our results reveal the diversity of humic acid at molecular level because of different degree of humification and the lability. These conclusions are significant for understanding the role of humic acid from different sources in pollutant transformation and the geochemical cycle at the molecular level.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3