BRD4 Inhibition Suppresses Senescence and Apoptosis of Nucleus Pulposus Cells by Inducing Autophagy during Intervertebral Disc Degeneration: An In Vitro and In Vivo Study

Author:

Zhang Guang-Zhi123ORCID,Chen Hai-Wei123ORCID,Deng Ya-jun13ORCID,Liu Ming-Qiang123ORCID,Wu Zuo-Long123,Ma Zhan-Jun123,He Xue-Gang123,Gao Yi-Cheng123,Kang Xue-Wen1234ORCID

Affiliation:

1. Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China

2. The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China

3. Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu Province 730030, China

4. The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, Gansu Province 730030, China

Abstract

Intervertebral disc degeneration (IDD) is the most common chronic skeletal muscle degeneration disease. Although the underlying mechanisms remain unclear, nucleus pulposus (NP) autophagy, senescence, and apoptosis are known to play a critical role in this process. Previous studies suggest that bromodomain-containing protein 4 (BRD4) promotes senescent and apoptotic effects in several age-related degenerative diseases. It is not known, however, if BRD4 inhibition is protective in IDD. In this study, we explored whether BRD4 influenced IDD. In human clinical specimens, the BRD4 level was markedly increased with the increasing Pfirrmann grade. At the cellular level, BRD4 inhibition prevented IL-1β-induced senescence and apoptosis of NP cells and activated autophagy via the AMPK/mTOR/ULK1 signaling pathway. Inhibition of autophagy by 3-methyladenine (3-MA) partially reversed the antisenescence and antiapoptotic effects of BRD4. In vivo, BRD4 inhibition attenuated IDD. Taken together, the results of this study showed that BRD4 inhibition reduced NP cell senescence and apoptosis by induced autophagy, which ultimately alleviated IDD. Therefore, BRD4 may serve as a novel potential therapeutic target for the treatment of IDD.

Funder

Lanzhou University Second Hospital

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3