Analysis of Two-Piano Teaching Assistant Training Based on Neural Network Model Sound Sequence Recognition

Author:

Dai Lei1ORCID

Affiliation:

1. Department of Art, Hefei Preschool Education College, Hefei, Anhui 230013, China

Abstract

In today’s society, with the gradual improve5ment of material living standards, people are also more in pursuit of their own spiritual enjoyment. The study of piano has gradually become a way for people to enrich their spiritual life, and more and more people attach importance to it. In the field of piano teaching, the two-piano method is a unique form of playing the piano. In order to solve the problem that the recognition accuracy of the sequence of two pianos is seriously reduced in the environment of noise and reverberation, this paper proposes an auxiliary training analysis system based on the neural network model. Firstly, in order to learn the nonlinear relationship between the sound order and the target task label from the massive data, a multitask preprocessing method combining speech enhancement and detection is used to supervise the deep neural network training. Then, convolutional neural network is used to construct the end-to-end recognition system, and the initial recognition results are checked and corrected by the phonological sequence model. Finally, the sequence recognition is carried out under the condition of noise, and the articulation is improved by speech enhancement front-end module, and then the sequence recognition model is used for recognition. Compared with traditional training methods, it is proved that our method is effective in improving the training efficiency and performance quality of players. At the same time, this method breaks through the limitation of traditional training method of double piano, creates a more scientific training means, and realizes the practice and application of artificial intelligence technology in the teaching of double piano.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3