The Influence of the Motor Traction Vibration on Fatigue Life of the Bogie Frame of the Metro Vehicle

Author:

Wang Qiushi1,Zhou Jinsong1ORCID,Gong Dao1,Wang Tengfei1,Chen Jiangxue1,You Taiwen1,Zhang Zhanfei1

Affiliation:

1. Institute of Rail Transit, Tongji University, Shanghai 201814, China

Abstract

During the service life of metro vehicles, the cracks frequently appear at the root of motor seats. This indicates the previous antifatigue designs are unable to cover the actual operating environment. Some individual loads, such as motor vibration, have been ignored or wrongly understood, which leads to the occurrence of local insufficient fatigue life of the frame. To illustrate the influence of the motor vibration on the fatigue life of the bogie frame, a metro vehicle was taken as an example: first, the precise finite element model of the frame was established, and its correctness was verified; then, the vibration characteristics of the frame were analyzed by sweep frequency calculation; and finally, considering the vibration acceleration signal of the motor measured on a metro line as the excitation, the influence of the random vibration on the fatigue life of the frame under traction and idle running conditions was compared and analyzed by solving the power spectral density of the dynamic stress response at the weak fatigue nodes of the structure. The results show that the energy of the vibration in the frame is mainly concentrated in modes 6 and 7, which are excited by the motor transverse and vertical vibration, respectively, and contribute a lot to the fatigue damage of the frame; the fatigue life of the vital positions of the frame under the traction condition significantly reduces compared to the idle running condition; and the contribution of the low-amplitude vibration above 300 Hz to the fatigue damage can be ignored. At last, the importance of the influence of the motor traction vibration on the fatigue life should be fully considered in the metro vehicle design was proposed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference19 articles.

1. The Motor Active Flexible Suspension and Its Dynamic Effect on the High-Speed Train Bogie

2. The active control of the lateral movement of a motor suspended under a high-speed locomotive

3. Research on key mechanics of high-speed train;G. Yang;Advances in Mechanics,2015

4. Research on the influence of railway bogie elastic vibration to fatigue life;L. Zhang;Railway Locomotive & Car,2018

5. Research on characteristics of operation loads and fatigue damage of metro train bogie frame;B. J. Wang;Journal of the China Railway Society,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3