Shallow Foundation Settlement Quantification: Application of Hybridized Adaptive Neuro-Fuzzy Inference System Model

Author:

Mohammed Mariamme1,Sharafati Ahmad2,Al-Ansari Nadhir3ORCID,Yaseen Zaher Mundher4ORCID

Affiliation:

1. College of Agricultural Engineering Sciences, University of Baghdad, Baghdad, Iraq

2. Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

3. Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden

4. Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

Settlement simulating in cohesion materials is a crucial issue due to complexity of cohesion soil texture. This research emphasis on the implementation of newly developed machine learning models called hybridized Adaptive Neuro-Fuzzy Inference System (ANFIS) with Particle Swarm Optimization (PSO) algorithm, Ant Colony optimizer (ACO), Differential Evolution (DE), and Genetic Algorithm (GA) as efficient approaches to predict settlement of shallow foundation over cohesion soil properties. The width of footing (B), pressure of footing (qa), geometry of footing (L/B), count of SPT blow (N), and ratio of footing embedment (Df/B) are considered as predictive variables. Nonhomogeneity and inconsistency of employed dataset is a major concern during prediction modeling. Hence, two different modeling scenarios (i) preprocessed dataset (PP) and (ii) nonprocessed (initial) dataset (NP) were inspected. To assess the accuracy of the applied hybrid models and standalone one, multiple statistical metrics were computed and analyzed over the training and testing phases. Results indicated ANFIS-PSO model exhibited an accurate and reliable prediction data intelligent and had the highest predictability performance against all employed models. In addition, results demonstrated that data preprocessing is highly essential to be performed prior to building the predictive models. Overall, ANFIS-PSO model showed a robust machine learning for settlement prediction.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3