Changes in Retinal Thickness and Brain Volume during 6.8-Year Escalating Therapy for Multiple Sclerosis

Author:

Borgström Max1,Fredrikson Mats2,Vrethem Magnus1,Mirabelli Pierfrancesco3,Link Hans4,Huang-Link Yumin1ORCID

Affiliation:

1. Division of Neurology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden

2. Department of Biomedical and Clinical Sciences and Forum Östergötland, Linköping University, Linköping, Sweden

3. Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden

4. Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden

Abstract

Background. Different disease-modifying therapies (DMT) for multiple sclerosis (MS) have disparate effects on disability outcomes. Sweden has a leading position globally in initiating high-efficacy DMT instead of escalating DMT from 1st-line to high-efficacy DMT. With optical coherence tomography (OCT), retinal changes can be measured at a few micrometer level. OCT has been increasingly applied in diagnosing MS and monitoring disease course and therapeutic effect. Objective. We investigate the effects of 1st-line versus high-efficacy DMT for MS on retinal and brain atrophy and on functional outcomes during 6.8 years of escalating DMT. Materials and Methods. In this prospective longitudinal observational study, 18 MS patients were followed up for 6.8 years. Twelve of the patients were untreated at baseline. All patients underwent 1st-line DMT for median duration of 2.4 years and then switched to high-efficacy DMT for a median duration of 2.9 years. Findings from neurological examinations, MRI, and OCT measures were registered 2-4 times per year. Results. Ganglion cell-inner plexiform layer (GCIPL) thickness was significantly reduced during 1st-line DMT (73.75 μm, p < 0.01 ) compared to baseline (76.38 μm). During high-efficacy DMT, thickness reduction was slower (73.27 μm, p < 0.05 ), and MRI contrast-loading lesions vanished ( p < 0.01 ). However, brain parenchymal fraction (BPF) decreased during high-efficacy DMT compared to 1st-line DMT. Estimated models showed similar results. Conclusion. GCIPL decline was most profound during 1st-line DMT and diminished during high-efficacy DMT. MRI contrast lesions vanished during high-efficacy DMT. However, brain atrophy continued regardless of high-efficacy DMT.

Funder

County Council of Östergötland and Linköping University Hospital

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3