A Variable Interval Rescheduling Strategy for Dynamic Flexible Job Shop Scheduling Problem by Improved Genetic Algorithm

Author:

Wang Lei1ORCID,Luo Chaomin2,Cai Jingcao1

Affiliation:

1. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China

2. Department of Electrical and Computer Engineering, University of Detroit Mercy, Detroit, MI 48221, USA

Abstract

In real-world manufacturing systems, production scheduling systems are often implemented under random or dynamic events like machine failure, unexpected processing times, stochastic arrival of the urgent orders, cancellation of the orders, and so on. These dynamic events will lead the initial scheduling scheme to be nonoptimal and/or infeasible. Hence, appropriate dynamic rescheduling approaches are needed to overcome the dynamic events. In this paper, we propose a dynamic rescheduling method based on variable interval rescheduling strategy (VIRS) to deal with the dynamic flexible job shop scheduling problem considering machine failure, urgent job arrival, and job damage as disruptions. On the other hand, an improved genetic algorithm (GA) is proposed for minimizing makespan. In our improved GA, a mix of random initialization population by combining initialization machine and initialization operation with random initialization is designed for generating high-quality initial population. In addition, the elitist strategy (ES) and improved population diversity strategy (IPDS) are used to avoid falling into the local optimal solution. Experimental results for static and several dynamic events in the FJSP show that our method is feasible and effective.

Funder

Anhui Provincial Natural Science Foundation

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3