A 3D Direct Vehicle-Pavement Coupling Dynamic Model and Its Application on Analysis of Asphalt Pavement Dynamic Response

Author:

Cao Peng1,Zhou Changjun2,Feng Decheng1,Zhao Youxuan3,Huang Baoshan2

Affiliation:

1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China

2. Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996-2010, USA

3. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

Currently dynamic response of the pavement structure is widely studied in pavement engineering. A 3D direct vehicle-pavement coupling dynamic model was developed to describe the pavement dynamic responses in this paper. The moving vehicle was simplified as spring-dashpot components, and the pavement structure was simulated using three-dimension finite element model. Based on Newton iteration and central difference integration algorithm, the static and dynamic coupling reactions between the pavement structure and vehicle were considered using finite element platform ABAQUS. The numerical results fit analytic results very well in static analysis and fit experiment results in dynamic analysis well too. The simulated results indicate that the dynamic pavement surface deflection is much higher than the situation in static analysis, due to the overlapping effect. This phenomenon enhances when vehicle speed increases. A discontinuous zone of shear stress was observed on the base surface between the location under moving load and the location the moving load just passed. It was also found that the vertical fluctuation exists on the vehicle even if there is no roughness on the pavement surface. In general, the developed 3-D direct vehicle-pavement coupling dynamic model was validated to be effective on evaluating pavement dynamic responses.

Funder

China Ministry of Communications

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3