Volumetric Behavior of Binary Mixtures of Alkoxyethanols and Some Selected Amines at 298.15 K

Author:

Kemeakegha Ayasen Jermaine1,Cookey Grace Agbizu2,Izonfuo Welford-Abbey Lolo1

Affiliation:

1. Department of Chemical Sciences, Niger Delta University, Wilberforce Island, PMB 71, Yenagoa, Bayelsa State, Nigeria

2. Department of Chemistry, Rivers State University of Science & Technology, PMB 5080, Port Harcourt, Rivers State, Nigeria

Abstract

Densities of binary mixtures of 2-methoxyethanol (2-MeO-EtOH) and 2-ethoxyethanol (2-EtO-EtOH) with hexylamine (HLA), diethylamine (DEA), triethylamine (TEA), tert-butylamine (TBA), aniline (ANL), and benzylamine (BLA) have been determined at varying compositions of the alkoxyalkanols at 298.15 K. The excess molar volumes, VE, of the binary mixtures were calculated from the experimental density data of the mixtures and the component single solvents. The calculated excess molar volumes were fitted into the Redlich-Kister polynomial to obtain the fitting coefficients and standard deviations. The excess molar volumes of the binary mixtures of all the solvent systems investigated were negative over the entire range of the solvents composition. The negative values were attributed to stronger hydrogen bond formations between the unlike molecules of mixtures than those between the like molecules of the pure components. The magnitude of the excess molar volumes of the binary mixtures of 2-methoxyethanol and the aliphatic amines were in the order TBA > TEA > DEA > HEA. For the two aromatic amines, the magnitudes were in the order BLA > ANL. For binary mixtures of the amines and 2-ethoxyethanol, the magnitudes were in the order DEA > TEA > TBA > HEA at compositions where the mole fraction of 2-EtO-EtOH was ≤0.5 and TBA > TEA > DEA > HEA above 0.5 mole fraction of 2-EtO-EtOH.

Publisher

Hindawi Limited

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3