All-Cause Death Prediction Method for CHD Based on Graph Convolutional Networks

Author:

Xue Yutao1ORCID,Chen Kaizhi1ORCID,Lin Huizhong2,Zhong Shangping1

Affiliation:

1. School of Computer and Big Data, Fuzhou University, Fujian 350108, China

2. Department of Cardiology, Fujian Medical University Union Hospital, Fujian 350004, China

Abstract

Coronary heart disease (CHD) has become one of the most serious public health issues due to its high morbidity and mortality rates. Most of the existing coronary heart disease risk prediction models manually extract features based on shallow machine learning methods. It only focuses on the differences between local patient features and ignores the interaction modeling between global patients. Its accuracy is still insufficient for individualized patient management strategies. In this paper, we propose CHD prediction as a graph node classification task for the first time, where nodes can represent individuals in potentially diseased populations and graphs intuitively represent associations between populations. We used an adaptive multi-channel graph convolutional neural network (AM-GCN) model to extract graph embeddings from topology, node features, and their combinations through graph convolution. Then, the adaptive importance weights of the extracted embeddings are learned by using an attention mechanism. For different situations, we model the relationship of the CHD population with the population graph and the K-nearest neighbor graph method. Our experimental evaluation explored the impact of the independent components of the model on the CHD disease prediction performance and compared it to different baselines. The experimental results show that our new model exhibits the best experimental results on the CHD dataset, with a 1.3% improvement in accuracy, a 5.1% improvement in AUC, and a 4.6% improvement in F1-score compared to the nongraph model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3