Multimodal Brain Tumor Classification Using Convolutional Tumnet Architecture

Author:

Usha M. Padma1ORCID,Kannan G.1ORCID,Ramamoorthy M.1ORCID

Affiliation:

1. India

Abstract

The most common and aggressive tumor is brain malignancy, which has a short life span in the fourth grade of the disease. As a result, the medical plan may be a crucial step toward improving the well-being of a patient. Both diagnosis and therapy are part of the medical plan. Brain tumors are commonly imaged with magnetic resonance imaging (MRI), positron emission tomography (PET), and computed tomography (CT). In this paper, multimodal fused imaging with classification and segmentation for brain tumors was proposed using the deep learning method. The MRI and CT brain tumor images of the same slices (308 slices of meningioma and sarcoma) are combined using three different types of pixel-level fusion methods. The presence/absence of a tumor is classified using the proposed Tumnet technique, and the tumor area is found accordingly. In the other case, Tumnet is also applied for single-modal MRI/CT (561 image slices) for classification. The proposed Tumnet was modeled with 5 convolutional layers, 3 pooling layers with ReLU activation function, and 3 fully connected layers. The first-order statistical fusion metrics for an average method of MRI-CT images are obtained as SSIM tissue at 83%, SSIM bone at 84%, accuracy at 90%, sensitivity at 96%, and specificity at 95%, and the second-order statistical fusion metrics are obtained as the standard deviation of fused images at 79% and entropy at 0.99. The entropy value confirms the presence of additional features in the fused image. The proposed Tumnet yields a sensitivity of 96%, an accuracy of 98%, a specificity of 99%, normalized values of the mean of 0.75, a standard deviation of 0.4, a variance of 0.16, and an entropy of 0.90.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3