Study on Fault Feature Extraction of Rolling Bearing Based on Improved WOA-FMD Algorithm

Author:

Jia Guangfei1ORCID,Meng Yanchao1ORCID

Affiliation:

1. School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

Abstract

The vibration signal of rolling bearing fault is nonlinear and nonstationary under the interference of background noise, and it is difficult to extract fault features from it. When feature mode decomposition is used to analyze signals, prior parameter settings can easily affect the decomposition results. Therefore, a fault feature extraction method based on improved whale optimization algorithm is proposed to optimize feature modal decomposition parameters. The improved WOA integrates Lévy flight and adaptive weight, and envelope entropy is used as fitness function to optimize feature modal decomposition parameters. The feature mode decomposition of the original signal is performed using the optimal combination of parameters to obtain multiple IMF components. The optimal IMF component envelope demodulation analysis is selected according to the kurtosis value, and the fault feature is extracted through the envelope spectrum. Comparing the LMWOA method with PSO and WOA methods by simulated and experimental signals, the results show that the optimization speed of LMWOA is faster than that of other methods. Compared with CEEMD, VMD, and FMD methods, the improved WOA-FMD method has higher fault feature ratio and can accurately extract fault features under noise interference. This method can effectively solve the parameter adaptive ability and improve the accuracy of fault diagnosis, which has practical significance.

Funder

Natural Science Foundation of Hebei Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3