Affiliation:
1. Departamento de Mecânica Computacional, Universidade Estadual de Campinas, Rua Mendeleiev, s/n, Cidade Universitária “Zeferino Vaz”, 13.083-970, Campinas, SP, Brazil
Abstract
Large Finite Element (FE) models of tires are currently used to predict low frequency behavior and to obtain dynamic model coefficients used in multi-body models for riding and comfort. However, to predict higher frequency behavior, which may explain irregular wear, critical rotating speeds and noise radiation, FE models are not practical. Detailed FE models are not adequate for optimization and uncertainty predictions either, as in such applications the dynamic solution must be computed a number of times. Therefore, there is a need for simpler models that can capture the physics of the tire and be used to compute the dynamic response with a low computational cost. In this paper, the spectral (or continuous) element approach is used to derive such a model. A circular beam spectral element that takes into account the string effect is derived, and a method to simulate the response to a rotating force is implemented in the frequency domain. The behavior of a circular ring under different internal pressures is investigated using modal and frequency/wavenumber representations. Experimental results obtained with a real untreaded truck tire are presented and qualitatively compared with the simple model predictions with good agreement. No attempt is made to obtain equivalent parameters for the simple model from the real tire results. On the other hand, the simple model fails to represent the correct variation of the quotient of the natural frequency by the number of circumferential wavelengths with the mode count. Nevertheless, some important features of the real tire dynamic behavior, such as the generation of standing waves and part of the frequency/wavenumber behavior, can be investigated using the proposed simplified model.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献