Can Superabsorbent Polymers Improve Plants Production in Arid Regions?

Author:

Jahan Mohsen1ORCID,Nassiri Mahallati Mehdi1ORCID

Affiliation:

1. Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), P.O. Box 9177948978, Mashhad, Iran

Abstract

Superabsorbent polymers (SAPs) have shown to be quite effective and useful in acting as a reservoir for water and some nutrients in arid and semiarid regions. There are many studies in Iran that have been performed in relation to SAPs and their useful application in agriculture; however, there is still a lack of its applied definition in arid regions. Therefore, this study was conducted with the aim of doing a meta-analysis of the results of studies conducted in Iran and answering a general question about whether the application of SAPs has been effective in enhancing the production or not, and if so, how much of SAP is recommended. To conduct this research, articles published during 2006–2016 on the subject of the effects of different rates of SAP application on yield and yield components of crops (including cereals, legumes, and medicinal and grassland plants) were investigated. The results of the meta-analysis showed that the mean consumption rate of SAPs for cereals, legumes, and medicinal and grassland plants was 83, 322, 1031, and 210 kg ha−1, respectively, and that, at these SAP application rates, the mean seed yield in cereals, medicinal plants, and legumes increased by 15.2, 12.6, and 38% (equivalent to 1059, 345, and 452 kg ha−1), respectively, compared with the control. Dry matter response to superabsorbent application was slower compared with the seed yield response. The mean consumption of 83 kg ha−1 of superabsorbent for cereals increased seed yield by 15.2% on average. According to the results, it seems that the application of 100 kg SAP ha−1 is the most appropriate rate for increasing seed and dry matter yields and satisfying economic aspects. These study findings may shed light on the environment and socioeconomic concerns and improve efficacy and reduction of costs.

Funder

Ferdowsi University of Mashhad

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3