Multiobjective Optimization of Diesel Particulate Filter Regeneration Conditions Based on Machine Learning Combined with Intelligent Algorithms

Author:

Wang Yuhua1ORCID,Li Jinlong1,Wang Guiyong1ORCID,Chen Guisheng1,Shen Qianqiao1,Zeng Boshun1,He Shuchao2

Affiliation:

1. Yunnan Key Laboratory of the Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China

2. Yunnei Power Co., Ltd., Kunming 650217, China

Abstract

To reduce diesel emissions and fuel consumption and improve DPF regeneration performance, a multiobjective optimization method for DPF regeneration conditions, combined with nondominated sorting genetic algorithms (NSGA-III) and a back propagation neural network (BPNN) prediction model, is proposed. In NSGA-III, DPF regeneration temperature (T4 and T5), O2,NOx, smoke, and brake-specific fuel consumption (BSFC) are optimized by adjusting the engine injection control parameters. An improved seagull optimization algorithm (ISOA) is proposed to enhance the accuracy of BPNN predictions. The ISOA-BP diesel engine regeneration condition prediction model is established to evaluate fitness. The optimized fuel injection parameters are programmed into the engine’s electronic control unit (ECU) for experimental validation through steady-state testing, DPF active regeneration testing, and WHTC transient cycle testing. The results demonstrate that the introduced ISOA algorithm exhibits faster convergence and improved search abilities, effectively addressing calculation accuracy challenges. A comparison between the SOA-BPNN and ISOA-BPNN models shows the superior accuracy of the latter, with reduced errors and improved R2 values. The optimization method, integrating NSGA-III and ISOA-BPNN, achieves multiobjective calibration for T4 and T5 temperatures. Steady-state testing reveals average increases of 3.14%, 2.07%, and 10.79% in T4, T5, and exhaust oxygen concentrations, while NOx, smoke, and BSFC exhibit average decreases of 8.68%, 12.07%, and 1.03%. Regeneration experiments affirm the efficiency of the proposed method, with DPF regeneration reaching 88.2% and notable improvements in T4, T5, and oxygen concentrations during WHTC transient testing. This research provides a promising and effective solution for calibrating the regeneration temperature of DPF, thus reducing emissions and fuel consumption of diesel engines while ensuring safe and efficient DPF regeneration.

Funder

Science and Technology Department Unveiling Project of Yunnan Provincial

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3