Form Finding of Shell Bridges Using the Pneumatic Forming of Hardened Concrete Construction Principle

Author:

Kromoser Benjamin1ORCID,Pachner Thomas2,Tang Chengcheng3,Kollegger Johann4,Pottmann Helmut5

Affiliation:

1. Institute of Structural Engineering, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria

2. Patonic, Trattnachtalstraße 1a, 4710 Grieskirchen, Austria

3. Computer Science Department, Stanford University, Stanford, CA 94305, USA

4. Institute for Structural Engineering, TU Wien, Karlsplatz 13, E212-2, 1040 Vienna, Austria

5. Center for Geometry and Computational Design, TU Wien, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria

Abstract

Concrete shells are fascinating structures. Even thin shells can span over large areas without requiring any columns. If a form-defining load case exists, the shape of the shell can be designed to ensure that the forces in the structure are transferred primarily by the membrane action, which leads to an even distribution of the stresses across the shell surface. Concrete as a material, characterized by high compressive strength and low tensile strength, can be used with a very high degree of utilization. A fundamental problem with building concrete shells is the high effort required for the production of the complicated formwork. A new construction principle called Pneumatic Forming of Hardened Concrete (PFHC) was invented at TU Wien and requires no traditional formwork or falsework during the construction process. An air cushion is used to lift a flat hardened concrete plate, and at the same time, additional post-tensioning cables are tightened to support the transformation of the flat plate into a double-curved shell. One possible application of PFHC is the construction of shell bridges. Here, the shape of the shell has to be designed according to the acting loads and the boundary conditions of the construction method. This paper describes the partly conflicting factors involved in the form-finding process for practical application and the semiautomated workflow for optimizing the geometry of shell bridges. In the first optimization step, the final bridge shape is determined using a particle-spring system or alternatively a thrust-network approach. In the second optimization step, the shell is completed to form a full dome—this is called the reference geometry and is required for the new construction method. Finally, the reference geometry is discretized into single-curved panels by using a mesh-based optimization framework. To frame the presented work, an overview of different experimental and computer-aided form-finding methods is given.

Funder

BOKU Vienna Open Access Publishing Fund

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3