Affiliation:
1. Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, No.182, Minyuan Road, Wuhan 430074, China
2. Chongqing Center for Drug Evaluation and Certification, No. 76 Changjiang Yi Lu, Yuzhong District, Chongqing 400042, China
3. Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China
Abstract
NMDA, a molecule that is capable of producing the loss of retinal ganglia cells (RGCs), has been widely studied; however, the detailed mechanism is not yet clarified. Previously, Wnt/β-catenin signaling has been suggested to be involved in the NMDA-induced retinopathy. In addition, previous investigations in our group demonstrated the presence of a Wnt/β-catenin/COX-2 axis in dorsal root ganglions (DRGs). Therefore, here in this paper, we tested whether there is an association of such axis with NMDA-induced RGC loss. Rat retinal damage models generated by intravitreal injection of NMDA were used to measure the expression levels ofβ-catenin, COX-2, and VEGF in retinas, and the neuron numbers of the retinal GCL of rats were counted. Then, pharmacological tools (MK801, a NMDA receptor inhibitor; Dickkopf homolog 1, a specific inhibitor of the Wnt pathway; NS-398, a COX-2 inhibitor; and bevacizumab, IVB, a VEGF inhibitor) were introduced to evaluate the detailed roles of Wnt/β-catenin, COX-2, and VEGF in retinopathy of rats. Results demonstrated that all three factors in sequence are positively regulated neuronal loss induced by NMDA. These observations indicated that the Wnt pathway/COX-2/VEGF axis plays a pathogenic role in retinopathy and represented novel therapeutic targets.
Funder
Science and Technology Plan Projects of Shenzhen City
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献