Assessment of Levels, Speciation, and Toxicity of Trace Metal Contaminants in Selected Shallow Groundwater Sources, Surface Runoff, Wastewater, and Surface Water from Designated Streams in Lake Victoria Basin, Uganda

Author:

Bakyayita G. K.12ORCID,Norrström A. C.1,Kulabako R. N.2

Affiliation:

1. Department of Sustainable Development, Environmental Science and Engineering, Kungliga Tekniska Högskolan, Brinellvägen, 28 SE-100 44 Stockholm, Sweden

2. Department of Civil and Environmental Engineering, Makerere University, Kampala, Uganda

Abstract

The levels, speciation of elements, and toxicity of selected trace metals as well as other parameters in selected surface water, shallow groundwater sources, landfill leachate, and associated surface runoff in the Lake Victoria basin, Uganda, were studied. The WHO guidelines, Ugandan standards, Canadian guidelines and Swedish EPA were used for assessment. The shallow groundwater was acidic with pH values below 6.5. The pH, dissolved organic carbon, flouride, and sulphate levels for all springs were below the guideline values although 52.8% was contaminated with nitrates while 39% was contaminated with chloride ions. Some surface water samples had levels of major elements, such as iron, chromium, aluminium, and manganese, above the guideline values. Speciation studies showed that 74% of the metal ions was bound to dissolved organic matter in surface water, whereas in landfill leachates, the dominant ionic species was metal hydroxides or fulvic acid bound. Risk analysis based on the Swedish EPA showed varied risks of negative effects in 30%–76% of the sample sites ranging from high to increased risk in surface water, whereas the results from modelling sorption data using the Bio-met tool showed potential risk to toxicity effects of Cu2+, Ni2+, Zn2+, and Pb2+ in 15.3%–30.8% surface water samples and 8.3%–62.5% groundwater samples.

Funder

Royal Swedish Government

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3